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Figure 2. Ni38C6 metal frame (b) and the truncated-octahedral Ni32C6 
moiety (a), which represents a fragment of the structure of Cr23C6 (solid 
lines depict the inner Ni8 cube and the outer truncated-octahedral 
polyhedron; open circles represent the interstitial carbide atoms). 

by the presence of strongest absorptions in the edge-bridging 
carbonyl stretching region.8 

The Ni32C6 inner core of the [HNi38(CO)42C6]
5" cluster (Figure 

2a) is closely related to a fragment of the structure of Cr23C6.7 

The Cr23C6 interstitial alloy has a Fm3m structure which conforms 
to the No. 24 of Andreini's space-filling models1516 and derives 
from a regular sequence of Cr32C6 truncated octahedra of fre­
quency I13 and Cr13 cuboctahedra three-dimensionally fused 
through their square faces. The truncated-octahedral Cr32C6 

moiety has a structure identical with that shown by the Ni32C6 

moiety of [HNi38(CO)42C6]5" and also shows very similar mo­
lecular parameters. It is worth noting that the only well-defined 
Ni-C interstitial alloy, viz., Ni3C,2,17 shows a hexagonal close-
packed nickel lattice encapsulating the carbide atoms in octahedral 
cavities.18,19 

To our knowledge [HNi38(CO)42C6]5" represents the first ex­
ample of stabilization in a molecular cluster of an extended 
fragment of the structure of a metal-carbide alloy and is suggestive 
of the possibility of a molecular approach to new Ni-C binary 
phases. 
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Because of the role they have played in structural inorganic' 
and bioinorganic chemistry,2 many ^-oxo complexes have been 
prepared and studied. Nearly all the complexes in this class which 
are presently known contain identical metal centers (M-O-M);3 

a much smaller number having two different metals (M-O-M') 
have been prepared.4 We wish to report the synthesis and unusual 
chemical properties of organometallic heterodinuclear m-oxo 
complexes containing a zirconium and tungsten atom bound to 
oxygen. 

Dinuclear oxaalkyl complexes 3 in Scheme I were obtained in 
good yield by treatment of the appropriate carbon-bound tungsten 
enolates5 1 with hydridozirconium complex 2 under rigorously 
air- and moisture-free conditions.6"8 Complex 3d exists as two 
diastereomers which are separable by recrystallization. Spectral 
data showed no evidence for W-Zr interaction in any of these 
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materials. The structure of 3b, determined by X-ray diffraction,9 

confirmed this deduction and revealed the extended-chain structure 
shown in the ORTEP diagram included in Scheme I. 

All the complexes 3 illustrated in Scheme I undergo decom­
position with extrusion of the two-carbon fragment as alkene. The 
conditions necessary for this decomposition and the organometallic 
products formed depend upon the substituents R and R'. Parent 
complex 3a and monophenyl complex 3c lead slowly at 45 0C to 
ethylene and stilbene and a complex mixture of organometallic 
products [[Cp(CO)3W]2

10 (56-66%); Cp2(Cl)Zr-O-Zr(Cl)Cp2
11 

(75-85%); [Cp2ZrO]3
12 (5-10%); Cp(CO)3W-Cl13 (20-24%)]. 

Decomposition of the two diastereomers of 3d is somewhat cleaner, 
giving frarw-stilbene and mostly [Cp2Zr(ClJ]2O and [CpW-
(CO)3J2.

14 An intermediate can be detected by NMR in the 
decomposition of the more rapidly reacting (threo) isomer. This 
intermediate, subsequently (see below) identified as bridging oxo 
complex 4, can be generated cleanly (70% NMR yield) by irra­
diation of 3b or 3c at -50 0C. The material is thermally sensitive, 
and isolation in pure form (36% yield) has only been possible with 
considerable loss of material. Decomposition of 4 in benzene or 
other nonprotic solvents produces a mixture containing [Cp2Zr-
(CO]2O (100%) and [CpW(CO)3J2 similar to that observed in 
the thermal decomposition of 3d. 

The heteronuclear ji-oxo dimer was characterized by spectro­
scopic and combustion analysis, and its structure was confirmed 
by X-ray diffraction (Scheme I).15 The Zr-O-W linkage is 

(9) Both crystal structures described in this paper were determined by Dr. 
F. J. Hollander of the UC Berkeley College of Chemistry X-ray Diffraction 
Facility (CHEXRAY). Data for 3b: monoclinic crystals; space group FlJn, 
witha= 11.7495 (15) A, 6= 14.2756 (17) A, c = 12.4871 (17) A,/9 = 91.956 
(11)°, and V = 2093.3 (8) A3; 2732 reflections; final R = 2.26%. Details of 
the structure determination are provided as supplementary information. 

(10) (a) Wilkinson, G. J. Am. Chem. Soc. 1954, 76, 209. (b) Birdwhistell, 
R.; Hackett, P.; Manning, A. R. J. Organomet. Chem. 1978, 157, 239. 

(11) Reid, A. F.; Shannon, J. S.; Swan, M. M.; Wailes, P. C. Aust. J. 
Chem. 1965, 18, 173. 

(12) Fachinetti, G.; Floriani, C; Chiesi-Villa, A.; Guastini, C. J. Am. 
Chem. Soc. 1979, 101, 1767. 

(13) Piper, T. S.; Wilkinson, G. J. Inorg. Nucl. Chem. 1956, 3, 104. 
Hoffman, N. W. Inorg. Chim. Acta 1984, 88, 59. 

(14) We have not been able to determine the fate of the second oxygen 
atom; no CO2 is detected in the product mixture. This problem is currently 
under study. 

almost exactly linear (175.7°) but very asymmetric due to a longer 
W-O bond (rw_o = 2.065 A; rZr<l = 1.871 A). The IR spectrum 
contains a broad strong absorbance at 789 cm"1 which shifts to 
750 cm"1 upon 18O substitution at the jz-oxo position. These values 
are typical of reported asymmetric stretching vibrations of M-
O-M and M-O-M' complexes.lb'16 The electronic spectrum 
contains a single broad band in the visible region with Xmax = 466 
nm [i = 892 L/(mol cm)]. The 17O NMR spectrum of an en­
riched sample shows a single resonance at 5 194 (vs. H2O capillary 
insert). Chemical shifts of 17O nuclei in both organic and inorganic 
molecules have been correlated with the ir-bond order at oxygen.17 

Bridging oxides containing metals in their highest oxidation state 
have reported shifts of 360-900 ppm; shifts for [Cp'2Zr(X)]20 
(Cp' = C5H5, C5Me5) complexes fall in the range 526-581 ppm.18 

The relatively high field shift of the asymmetric JJ-OXO complex 
4 is consistent with significantly reduced ir-bonding between the 
oxygen and one of the metals (presumably tungsten), compared 
with that observed in high-valent homodinuclear analogues. 

The chemical reactivity of 4 depends dramatically on the nature 
of the substrate employed. The electrophilic reagent acetyl 
chloride, for example, reacts with 4 within 5 min at -40 °C. 
Surprisingly, this transformation results in cleavage of the (pre­
sumably) stronger Zr-O bond of the bridge, giving Cp2ZrCl2 
(100%) and the previously unreported acetate complex Cp-
(CO)3W(OCOCH3) (82%).19 By comparison, the homodinuclear 
complex [Cp2Zr(Cl)J2O reacts slowly with acetyl chloride at room 
temperature, eventually affording Cp2ZrCl2 as the only organo­
metallic product.20 

Despite the fragility of the metal-oxygen bonds implied by the 

(15) X-ray data for 4: monoclinic crystals; space group P2Jn, with a = 
11.1729(9) A, 6 = 12.5026(10) A, C= 13.7658 (13) A,/3 = 100.924(8)°, 
and V = 1888.1 (5) A3; 2458 reflections; final R = 3.22%. Details of the 
structure determination are provided as supplementary information. 

(16) San Filippo, J., Jr.; Grayson, R. L.; Sniadoch, H. J. Inorg. Chem. 
1976, 15, 269 and references therein. 

(17) (a) Klemperer, W. G. Angew. Chem., Int. Ed. Engl. 1978, 17, 246 
and references therein, (b) Miller, K. F.; Wentworth, R. A. D. Inorg. Chem. 
1979, 18, 984. 

(18) Reference 3b; Jacobsen, Jacobsen, E. N.; Bergman, R. G., unpub­
lished results. 

(19) No reaction was observed between Cp2(Cl)Zr(OCOCH3) and Cp-
(CO)3W-Cl under these conditions. 

(20) The acetate complex Cp2(Cl)Zr(O2CCHj) can be detected by 1H 
NMR spectroscopy during the course of the reaction. 
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thermal decomposition of 4 and its reaction with acetyl chloride, 
reaction with nucleophiles leaves these bonds intact. Thus, 
treatment of the ji-oxo complex with excess PMe3 at 0 0 C in 
CH2Cl2 or toluene leads stereospecifically21 to cis-substitution 
product 5 (Scheme I) in 95% NMR and 71% isolated yield. 
Reaction of 4 with tert-butyl- or diphenylacetylene leads to the 
(M-oxo)(7r-alkyne) complexes 6 (68% yield by NMR; 61% isolated) 
and 7 (75% by NMR; 71% isolated),8 to our knowledge the first 
example of this class of molecules.22 Reaction of 5 with me­
thyllithium also does not cleave the M-O-M' linkage. Substitution 
in this case takes place at zirconium and leads to methylzirconium 
complex 8 in 55% yield. Reaction of methyllithium with the 
homonuclear dimer Cp2(Cl)Zr-O-Zr(Cl)Cp2 also leads to Zr-Cl 
bond cleavage, giving Cp2(CH3)Zr-O-Zr(CH3)Cp2. 

Mechanistic studies now under way are aimed at improving 
our understanding of the unusual selectivities of these transfor­
mations. 
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Although platinum(O) is centrally important in heterogeneous 
catalytic reforming of petroleum,4 the only soluble platinum 
complexes that react with saturated hydrocarbons are platinum 
chlorides and acetates.5 In particular, and by contrast with iridium, 
rhodium, and the other transition metals that have provided the 
basis for the recent major advances in carbon-hydrogen bond 
activation,56 no phosphine-stabilized platinum species has been 
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50, 725-733. Kushch, L. A.; Lavrushko, V. V.; Misharin, Yu. S.; Moravsky, 
A. P.; Shilov, A. E. Now. J. Chim. 1983, 7, 729-733. 
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Figure 1. Drawing of PtH(CH2CMe3)(Cy2PCH2CH2PCy2). Ellipsoids 
are drawn at the 50% probability level. Except for the hydride ligand, 
H atoms are omitted for the sake of clarity. Selected bond distances and 
angles: Pt-H, 1.56 (5); Pt-C (1), 2.125 (5); Pt-P(I), 2.278 (2); Pt-P(2), 
2.253 (2) A; H-Pt-C(I), 82 (2)°; C(I)-Pt-P(I), 95.3 (1)°; P(I)-Pt-
P(2), 88.16 (6)°; P(2)-Pt-H, 96 (2)°. 

reported that reacts /nrermolecularly with unactivated C-H bonds, 
although //!rramolecular reaction is facile.7 Here, we report that 
thermal reductive elimination of neopentane from cis-hydrido-

(6) For leading references, see: Buchanan, J. M.; Stryker, J. M.; Bergman, 
R. G. J. Am. Chem. Soc. 1986,108, 1537-1550. Jones, W. D.; Feher, F. J. 
J. Am. Chem. Soc. 1985, 107, 620-631. Crabtree, R. H. Chem. Rev. 1985, 
85, 245-269. 

(7) See, for example: Cheney, A. J.; Shaw, B. L. J. Chem. Soc, Dalton 
Trans 1972, 754-763. Foley, P.; DiCosimo, R.; Whitesides, G. M. J. Am. 
Chem. Soc. 1980, 102, 6713-6725. McCarthy, T. J.; Nuzzo, R. G.; White-
sides, G. M. J. Am. Chem. Soc. 1981, 103, 3396-3403, 3404-3410. 
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